What can be done using HFBS?

Madhusudan Tyagi NIST Center for Neutron Research

2/5/2008

HFBS Tutorial

Beam Time							1
100% - 90% - 80% - 70% - 60% - 50% - 40% - 30% - 20% - 10% -							
	SANS	USANS	SPINS	DCS	HFBS	NSE	
Instrument development	6%	5%	1%	11%	2%	14%	
Biology	30%	6%	0%	3%	23%)	13%	
Complex fluids	20%	23%	0%	4%	2%	29%	
Polymers	27%	20%	0%	4%	24%	17%	
Small molecules	0%	0%	0%	8%	(37%)	9%	
Materials science	13%	45%	1%	18%	6%	3%	
Magnetism	5%	0%	98%	50%	7%	16%	

Biology and Small Molecules....

2/5/2008

Melting in anhydrous lipid membranes

1,2-Dipalmitoyl-sn-glycero -3-phosphocholine (hh-DPPC)

Mechanism important as a wide variety of organisms can survive in anhydrous condition for a long period!

Melting from gel-like solid phase to liquid phase

Note that scattering originates from protons depicted by white bonds.

Sharp portion of the transition only by lipid tails!!

2/5/2008

HFBS Tutorial

Melting in anhydrous lipid membranes

Below 220K, vibration regime is observed.

Above 300K, it is clear that a pronounced mobility is gained by protons in tail of lipid.

Sharp transition is dominated by contribution from lipid tails!

Very little mobility of head groups at low T while the tails show significant mobility!!

At high T, the head groups melt with no signature of distinct melting.

Doxastakis et al., BioPhys. J. 92, 147 (2007)

2/5/2008

Thermodynamic transition in water

Center for Neutron Research

2/5/2008

HFBS Tutorial

Water in confined silica

Fragile-to-strong transition at around 222K in relaxation time of water!

Liu et al., J. Phys: Cond. Matter 18, S2261 (2006)

2/5/2008

Relation with transition in DNA hydration water

Smart use of isotope substitution provides the MSD for *H* of hydration water and of DNA. The crossover in hydration water and DNA occurs at same temperature 222K!

Chen et al., J. Chem. Phys. 125, 171103 (2006)

Relation with transition in DNA hydration water

No data analysis! Visual analysis shows a change in dynamics at 225K!!

Chen et al., J. Chem. Phys. 125, 171103 (2006)

2/5/2008

HFBS Tutorial

Relation with transition in DNA hydration water

Two temperature laws:

HFBS Tutorial

Low T dynamics of confined CH₃I molecule

Full pore data shows peaks similar to bulk and additional peaks at $\pm 4\mu eV$, while the bulk-like peaks have disappeared in partially filled pore!.

Origin: i) low energy peaks \rightarrow core ii) high energy peaks \rightarrow surface

Dimeo et al., Phys. Rev. B 63, 014301 (2000)

Low T dynamics of confined CH₃I molecule

probability distribution of barrier height extracted from the full pore spectra

Dimeo et al., Phys. Rev. B 63, 014301 (2000)

Polymers....

2/5/2008

Polymers and polymer blends

"Thermodynamically Miscible Polymer Blend": two-component system molecularly mixed

> Technological importance: new materials, mechanical properties, rheology, etc

Fundamental questions: dynamic miscibility, length scales, etc

KEY QUESTION:

How is the dynamics of one component modified by blending?

2/5/2008

Segmental Dynamics in Polymers and Polymer Blends

Different segmental dynamics (α–relaxation) for each component in the blend

Dynamics of Both Components in a blend

2/5/2008 **H**

HFBS Tutorial

Backscattering Measurements: PVAc in blend

 $Q = 1 \text{\AA}^{-1}$

PVAc in BLEND

-[CH-CH₂-]_n O-C-CH₃ O

Description of the NS data:

FT of a KWW function

 $S(Q, \omega) = A(Q) * FT \left\{ exp \left[-\left(\frac{t}{\tau_w}\right)^{\beta} \right] \right\}$

2/5/2008

HFBS Tutorial

Backscattering Measurements: PVAc in blend

2/5/2008

Q and T-dependence of characteristic times

2/5/2008

HFBS Tutorial

Q and T-dependence of characteristic times

• At the same temperature, **faster** dynamics of PVAc in

PVAc in BLEND

•No apparent change in Qdependence after blending!

2/5/2008

blend.

HFBS Tutorial

Q and T-dependence of characteristic times

A shift in glass transition temperature or equivalently, concentration effects can be used to explain the dynamics of high-Tg component.

2/5/2008

HFBS Tutorial

Backscattering Measurements: PEO in hPEO/dPVAc

Confinement Effects in Polymer Blends

Confinement Effects in Polymer Blends

Geometrical Confinement: T dependence of microscopic dynamics

Both bulk and confined polymers show diffusive-like behavior above T_g!

Diffusive-like behavior would disappear around 1.6nm! Minimal length scale for segmental relaxation Schonhals et al., Colloid Poly Sci 282, 882 (2004)

2/5/2008

HFBS Tutorial

Glass transition of thin polymer blend films

$I(Q) = exp(-Q^2u^2/3)$

Glass transition of thin films in polymer is influenced by two parameters

- i) Effect of confinements
- ii) Interfacial interactions

tetramethyl bisphenol-A Polycarbonate (TMPC); Tg=493K

deuterated polystyrene; $T_g = 383K$

HFBS Tutorial

Besancon et al. PRL 2006

2/5/2008

Glass transition of thin polymer blend films

Ellipsometry and DSC average GT are same while the incoherent elastic neutron scattering measurements indicate a higher T_g for TMPC component!

First evidence of two effective T_gs in a miscible blend!!

Signs of slight change in self concentration of the component.

0.3

0.2

0.15

0

50

100

h (nm)

150

ູ້ອີ 0.25

Besancon et al. PRL 2006

2/5/2008

$$\varphi_{eff} = \varphi_s + (1 - \varphi_s)\varphi$$

HFBS Tutorial

Center for Neutron Research

200

Acknowledgments

Craig Brown, Tim Jenkins, John Copley, Dan Neumann and Yamali Hernandez

2/5/2008

